ไฝ็ธ็ฉบ้ใซใใใๅๆใจใฏใ็นๅ \(\{x_i\}\) ใซๅฏพใใฆใใ \(x_\infty\) ใใใฃใฆใ \[\forall W, \exists N, \forall n>N, x_\infty \in W \implies x_n \in W\] ใๆ็ซใใใใจ (\(W\) ใฏ \(x_\infty\) ใฎ่ฟๅ). ใใฎ \(x_\infty\) ใฎใใจใๆญฃใซๅๆๅคใจๅผใถใฎใงใใฃใ 1.
ไพใใฐใใใ่ท้ข็ฉบ้ใงใใใฐใ \(\forall W, x_\infty \in W \implies x_n \in W\) ใฏ \[\forall \epsilon, \|x_\infty - x_n\| < \epsilon\] ใชใฉใจๆธใ็ดใใ.
ไฝ็ธ็ฉบ้ \(X\) ใฎ้จๅ้ๅ \(V\) ใ้้ๅใงใใใใจใฏๆฌกใจๅๅค. \(V\) ใฎๅๆใใ็นๅ \(\{x_i\}_i\) ใฎๅๆๅค \(x_\infty\) ใฏใใคใ \(V\) ใซๅฑใใ.
้้ๅ \(V\) ใซใคใใฆๅพไปถใ็คบใ.
\(U = X \setminus V\) ใจใใใจ \(V\) ใ้้ๅใงใใใใจใฏ \(U\) ใ้้ๅใงใใใใจใจๅๅค.
ๅๆใใ็นๅ \(\{ x_i : x_i \in V\}\) ใฎๅๆๅค \(x_\infty\) ใ \(U\) ใซๅฑใใใจไปฎๅฎใใ.
\[\forall W, \exists N, \forall n>N, x_\infty \in W \implies x_n \in W\] ใงใใใใ\(U\) ใฏ้้ๅใงใใใฎใงใ \[\forall x \in U, \exists W \subseteq U, x \in W\] ใๆ็ซใใ (\(U\) ใใใฏใฟๅบใชใ่ฟๅใๅญๅจใใ). ใใใ \(W\) ใจใใฆๆก็จใใใจใ \[x_n \in W\] ใๆ็ซใใชใ (\(x_n \not\in U\) ใจใใใฎใง).
็็พใ็ใใใฎใงไปฎๅฎใ่ชคใใงใๅๆๅคใฏ \(U\) ใซๅฑใใชใ. ๅณใกใ\(V\) ใซๅฑใใ.
้ใฎ่จผๆใฏไปใฎ่จผๆใฎใปใผใปใผ้ใใฎใพใพ.
่็ๆณใง็คบใ.
\(V\) ใ้้ๅใงใฏใชใใจใๅณใกใ\(U=X \setminus V\) ใ้้ๅใงใฏใชใใจไปฎๅฎใใ.
ๅ จใๅ ใปใฉใจๅๆงใซใ\(U\) ใ้้ๅใงใฏใชใใใจใใใ \[\exists y \in U, \forall W (y \in W), W \not\subseteq U\] ใๆ็ซใใ.
\[\begin{align*} W \not\subseteq U & \iff \exists y' \in W, y' \not\in U \\ & \iff \exists y' \in W, y' \in V \end{align*}\]
ใงใใใใจใซๆณจๆใใใจๅ ใปใฉใฎๅฝ้กใฏๆฌกใฎใใใซๆธใๆใใใใ: \[\exists y \in U, \forall W (y \in W), \exists y' \in W, y' \in V\]
ใใฎ \(y\) ใๅๆๅคใซๆใคใใใช็นๅใๆงๆใใใใจใซใใ. \(y\) ใซๅฏพใใฆ \(W\) ใไธใใๆใไธใๆบใใใใใช \(y'\) ใ \(y'(W)\) ใจๆธใ.
้ ๅใๅ่ชฟใซ็ญใใฆใใใใใช่ฟๅใฎๅ \[\{W_i : y \in W_i\}\] ใซๅฏพใใฆ็นๅ \[\{y'(W_i) : y \in W_i\}\] ใๆงๆใใใจใๅ็นใฏ \(y' \in V\) ใงใใฃใฆใๅๆๅคใฏ \(y \in U\) ใจใชใ.
ใจใใใใใง็็พ.
้ๅ \(V\) ใ \(X\) ใซ็จ ๅฏใงใใใจใฏใ \(V\) ใฎ้ๅ \(\overline{V}\) ใ \(X\) ใจไธ่ดใใใใจใงใใ. ใใฎๅฎ็พฉใฏๆฌกใจๅๅค: \[\forall U \subseteq X, U \ne \emptyset \Rightarrow V \cap U \ne \emptyset.\]
\(0\) ใซๅๆใใ \(\mathbb{R}\) ใฎไธใฎ็นๅ \(\{a_i : a_i > 0\}_i\) ใซใใฃใฆ้ๅ \[X = \{ na_i : n \in \mathbb{Z}, i \in \mathbb{N}\}\] ใๆงๆใใ. ใใฎ \(X\) ใฏ \(\mathbb{R}\) ใซ็จ ๅฏใงใใ.
\(\mathbb{R}\) ใฎไปปๆใฎ้้ๅใๅใ. \(\mathbb{R}\) ใฎ้้ๅใฎๅฎ็พฉใฏๅคงไฝใ ้้ๅ \(\{(\alpha, \beta): \alpha<\beta\}\) ใงๆงๆใใใฎใงใ \[\forall \alpha < \beta, (\alpha, \beta) \cap X \ne \emptyset\] ใงใใใใจใ็คบใใฐใใ. ็นๅใ \(0\) ใซๅๆใใใใจใใ \[\exists i, a_i < \beta - \alpha\] ใๆ็ซใใ. ใใฎใใใช \(a_i\) ใๅใๅบใใๆใ \[\exists n \in \mathbb{Z}, n a_i \in (\alpha, \beta)\] ใๆใ็ซใคใใจใ่จใ. ใพใๆฎ้ใซ่ใใใๆใ็ซใกใใ. \[K = \max \{ k : k a_i \leq \alpha\}\] ใจใใใจใ \(K\) ใๆๅคงๅคใงใใใใจใใ \[(K+1) a_i \not\leq \alpha \iff (K+1) a_i > \alpha\] ใพใใ \[\begin{align*} (K+1) a_i & = K a_i + a_i \\ & \leq \alpha + a_i \\ & < \alpha + (\beta - \alpha) = \beta \end{align*}\] ใจใใใใใงใ \[(K+1) a_i \in (\alpha, \beta)\] ใงใใ. ใจใใใใใง \((\alpha, \beta)\) ใฏ \(X\) ใจไบคใใใๆใค.
\(\mathbb{Q}\) ใฏ \(\mathbb{R}\) ใซ็จ ๅฏใงใใ.
็นๅ \(\{a_i = \frac{1}{i} : i = 1,2,\ldots \}\) ใฏ \(0\) ใซๅๆใใ. \(\mathbb{Q} = \{m a_i : m \in \mathbb{Z}, i\}\) ใงใใใใจใจๅ ใปใฉใฎๅฝ้กใใ็คบใใใ.