2020-12-05 (Sat.)
\(\def\ket#1{|#1\rangle}\)
次で定められる \(2^k \times 2^k\) 行列をアダマール行列という.
この行列が定める線形変換を アダマール変換 という.
すなわちアダマール変換は長さ \(n=2^k\) の実ベクトル(整数または複素数の上のベクトルでもよい)について \(x \mapsto H_n x\) と写す.
\[H_n H_n = I_n\] が成り立つので, \(H_n\) 自身が逆行列になっている.
変換するベクトルが整数の場合であっても, 上の行列は \(\sqrt{2}\) のせいで実数に写してしまう. 計算機なんかで誤差のない計算をしたい場合にはせっかくなので整数の上で計算を閉じさせたい. そこで,
としておくことで整数の範囲で全て計算が出来る. またこれは単に定数倍をしているだけなので, これから言うようなアダマール変換に関する性質は尚保っている.
愚直に行列演算としてアダマール変換を計算するとその計算時間は \(O(n^2)\) 掛かる. 一方でアダマール行列の再帰的な定義に沿って計算をすると \(O(n \log n) = O(nk)\) に節約される. その方法は wikipedia/Fast_Walsh-Hadamard_transform の図が詳しい. また Python による実装例そのものもそこにある.
簡単に説明すれば, まず行列を 2x2 ブロックに区切って \(H_1\) だと思って適用する. 次に 2x2 をひとかたまりだと思ってさらにその 2x2 ブロックを作って(全体としては 4x4)にやはり \(H_1\) を適用する. ここまでで \(H_2\) を適用したことになる. というのを最後まで繰り返していくだけ.
2つの, 長さ \(n=2^k\) のベクトル(または数列) \(u,v \in \mathbb K^n\) があるとする. ここで \(\mathbb K\) は実数などの体. この二つのベクトルに関して次を定める: \[X(u,v) = H_n (H_n u \ast H_n v).\] 或いは \[X(u,v) = H_n^{\leftarrow} (H_n^{\rightarrow} u \ast H_n^{\rightarrow} v)\] としても同じである. ただしここで \(\ast\) はベクトルの要素ごとの積のこととする \[a \ast b = \sum_i a_i \times b_i \ket{i}.\]
このとき, 次が成り立つ: \[X(u,v) = \sum_{i,j} u_i \times v_j \ket{i \oplus j}\] ここで \(\oplus\) は2進数の桁ごとの xor のこと. また添字の \(i,j\) は \(0\) から始まって \(n\) 未満までの自然数.
\(n=1,2\) の場合だけ例を見る.
\(u=u_0 \ket{0}, v = v_0 \ket{0}\) について, \[X(u,v) = H_0 (H_0 u \ast H_0 v) = H_0 (u \ast v) = (u \times v) \ket{0}\] ここで \(0 \oplus 0 = 0\) なので確かにそうなっている.
\(u=\left[ u_0, u_1 \right]^T\), \(v=\left[ v_0, v_1 \right]^T\) について, \[\begin{align*} X(u,v) & = H_1^{\leftarrow} (H_1^{\rightarrow} u \ast H_1^{\rightarrow} v) \\ & = H_1^{\leftarrow} \left[ \begin{array}{c} (u_0 + u_1) (v_0 + v_1) \\ (u_0 - u_1) (v_0 - v_1) \\ \end{array} \right] \\ & = \left[ \begin{array}{c} u_0 v_0 + u_1 v_1 \\ u_0 v_1 + u_1 v_0 \\ \end{array} \right] \end{align*}\]
帰納法によって示すことは出来るが書くのは大変にダルいので省く.
how to calculate XOR (dyadic) convolution with time complexity O(n log n)
Karatsuba 法の \(+\) を \(\oplus\) に置き換えたものだと思うことが出来る.
\[H_n X(u,v) = H_n u \ast H_n v\] と書くと, \(H_n\) は畳み込みから積への準同型を与えるものだと思える.
/kopricky.github.io/code/FFTs/fwht.html
によれば同じノリで or や and に関する畳み込みも可能らしい.