æ¨æŠå¯ããããĢčããĻãããã¨ãæĨč¨ã¨ããĻæ¸ããžã.
ããŽãããĒæäŊãįš°ãčŋããã¨ã§å¸¸čã¯äēäēēãŽä¸ã§į˛žįˇģåããã. į˛žįˇģåãĢéĸãã æˇąã ãŋãããĒãŽãæŗåãããã¨ãåēæĨã. čĄãįãæˇąãŋãžã§éããäŧ芹ã¯ãå˛åĻč ååŖĢãŽäŧ芹ãŽãããĒããŽã ãã.
ã¨ããã§į§ã¯äēēãĢãĸãŋãĒãã¨ãŽãã¨ãįĸēčĒãããã¨ãĢããŠãĻãããã. čãã¯ä¸æãŽæĨã ã¨čãã ã\(A\) 㯠\(B\) ã¨ããĻåĻįããšãã§ãããīŧã ã¨čã. ããã¨į¸æ㯠ã\(A'\) 㯠\(B\) ã¨ããĻåĻįããĒãããīŧã ã¨čŋããããæããˇãŗããĢãĢčããã¨ããĄããããã ããããããã ãã¨č¨ãã¨ã ãããã \(A\) ããŠãããšããåããããã ã¨ãåããĻįãã. į§ã¨ããĻã¯ããããããä¸ã¤æˇąãã¨ãããžã§čããä¸ã§čŗĒåãããŽãĢãããŽæåŗãæą˛ãŋã¨ãŖãĻãããĒã. į¸æã¯ããããããæˇąãį˛žįˇģåãããããĒãã¨čããĻãããŽãīŧį¸æãããĢīŧã æãã¯į§ãĢãããžã§æˇąãčĒŦæããįįąã¯ãĒãã¨čããĻãããŽãīŧį§ãããĢã ã¨æãããĻããīŧã ãŽãŠãĄããã . 大æĩãåžč ãĒæ°ããã. ãã§ããããĒäžå¤ãããããžãããīŧããĒãŠã¨įĒãŖčžŧãã°ãį¸æãæ´ãĢčŠŗį´°ãĢčããããŖãããĢãĒããŽãããããĒããã į§ãéĸåãããããĒãŽã§ããããĒãããã§ãããã¨æãŖãĻéģãŖãĻããžã.
ã¨ããããã§ãæ¨æĨį§ãå¯ããĢčãäēãããįĩčĢã¨ããĻãæŦĄãŽãããĒæč¨ãåžã. é ã¯č¯ãã¨æãããĻããæšãæåŠã§ãã.
å¤å ¸čĢįãčãã. æä¸åžã¨ãčĒãã. ãããĢæŦĄãŽãˇãŗããĢãå°å Ĩãã.
åŗãĄã\(R(p)\) ã¨ã¯įĸēį \(p\) ã§įãĢãĒããããĒãˇãŗããĢãŽãã¨ã§ãã. AND 㨠OR ãåŽįžŠããã.
åŗãĄ 1 ã¤ãŽčĢįåŧãŽä¸ãĢįģå ´ãã \(R\) ã¯å ¨ãĻįŦįĢã ã¨ããĻãã. ã¨ããããã§ãåæįĸēįã§ãã. \(R\) ãããģãĸãĢãŦãŗãæēããã¨ã§ãããĻããã°
åŊéĄ \(P\) ãããŖãĻããããįĸēį \(p\) ã§čĩˇãããã¨ã \(R\) ãäŊŋãŖãĻč¨ã. åãã \[R(p) \Rightarrow P\] ã¨ããã°ååãã¨æãŖããããįĸēį \(1-p\) 㧠\(\lnot P\) ãčĩˇããããã¨ãããããå°ããĒããŽã¯æŦ éĨã ã¨æ°ãĨãã. æŦĄãŽãããĢãã. \[R(p) \iff P\] æŽéã .
ãããã \[R(1-p) \iff \lnot P\] ãå°ããã.
1ã¤ãŽčĢįåŧã§2ã¤äģĨä¸ãŽ \(R\) ãįģå ´ããããã¨ããã¨åąãĒãŖããããã¨ãčĩˇãã. äžãã° \(P \iff R(0.5)\) ã¨ããã¨ã \(\lnot P \iff R(0.5)\) ã§ãã. \(\iff\) ãŽæ¨į§ģæ§ãäŊŋãŖãĻ \(P \iff \lnot P\) ãå°ããæ°ãĢãĒãŖãĻããžã.
ãžãã \[\forall p,q, R(p) \not\iff R(q)\] ã§ããã¨ããã°åéŋã§ãã.
ããããįģå ´ãã2ã¤ãŽ \(R\) ã¯įĩåąīŧã¤ãŽããŽãĒãŽã§ã \(P \iff R(0.5)\) ã \[\mathrm{let}~S=R(0.5), P \iff S\] \(\lnot P \iff R(0.5)\) ã \[\mathrm{let}~S=R(0.5), \lnot P \iff \lnot S\] ã¨ããã°å°ãã¯čĻæ´ãããč¯ããĒã. let ãĒãŠã¨æ¸ããĻããããã¯įĩåą
ã¨ãããã¨ã§ãã.
äžå¤ãŽææã¨ã¯ \(P\) ã ã¨ããä¸ģåŧĩãĢ寞ããĻ \[\exists Q, Q \Rightarrow \lnot P\] ã§ããã¨ããä¸ģåŧĩã§ãã. ããã¯č¨čéããåŊéĄčĢįãĢįŋģč¨ŗããããŽã ãæãããĢįįžããĻããããŠãããĢčĒ¤ãããã.
常čįãĢčãã. \(P\) ã ã¨ããä¸ģåŧĩã¯åŽãŽã¨ãã \[R(p) \iff P\] ã ã¨č¨ãŖãĻãã. åŗãĄæįĢããĒãäŊå°ãæŽããĻãã. ãããĻäžå¤ãŽææã¨ã¯ \[\mathrm{let}~Q = R(q), Q \Rightarrow \lnot P\] ãŽãã¨.
2ã¤ãŽįĸēįįåŊéĄ \(P \iff R(p)\), \(Q \iff R(q)\) ãĢã¤ããĻ \(Q \Rightarrow P\) ãŽã¨ãã \(q \leq p\) ã§ãã.
æįĢããæ°ããã.
ããŽåŽįãį¨ããã¨ã \[q \leq 1 - p\] ãæįĢãã.
åãã \[R(p) \iff P\] ã¨ããä¸ģåŧĩãĢ寞ããĻã ãã \(q, Q\) 㧠\[q > p\] \[\mathrm{let}~Q = R(q), Q \Rightarrow P\] ãæįĢãããã¨ãæį¤ēãããã¨.