įž¤ \(G\) ãŽéå \(X\) ãĢ寞ããäŊį¨ãčãã. åŗãĄãįž¤ãŽäģģæãŽčĻį´ \(g\) 㯠\(g: X \to X\) ãĒãéĸæ°ã¨ããĻæ¯ãčã. \(x \in X\) ㎠\(g\) ãĢããåãåãĢ \(gx\) ã¨æ¸ã. \[\forall g \in G, g : X \to X\]
\(G\) ãŽįš \(x \in X\) ãĢéĸããåēåŽé¨åįž¤ã¨ã¯ \[G_x = \{ g \in G : gx = x \}\] ã§ãã. åĨãŽįš \(y \in X\) ãĢã¤ããĻãåæ§ãĢ \[G_y = \{ g : gy = y \}\] ããã.
äģ \(y = h x (h \in G)\) ã ã¨ãã. \(G_y\) ãŽäģģæãŽčĻį´ \(g\) ãĢã¤ããĻãåŽįžŠãã \[gy=y\] \(y=hx\) ãäģŖå ĨããĻ \[ghx=hx\] 严čžēãĢåˇĻãã \(h\) ãŽéå \(h^{-1}\) ãæããĻ \[(h^{-1}gh) x = x\] ãåžã. åŽįžŠãã \[(h^{-1}gh) \in G_x\] ãåžã.
å ¨ãåæ§ãĢãäģģæ㎠\(g \in G_x\) ãĢ寞ããĻã \[(hgh^{-1}) \in G_y\] ãåå¨ãã.
ããŽãããĢããĻã\(G_x\) ãŽčĻį´ ã \(G_y\) ãŽčĻį´ ã¯ä¸å¯žä¸å¯žåŋããĻãã. \[G_x \cong G_y\]
åå \[f: X \to Y\] ãĢ寞ããĻã ããåå¤éĸäŋ \(\sim\) ãĢã¤ããĻã \[\forall x_1,x_2 \in X, x_1 \sim x_2 \Rightarrow fx_1 = fx_2\] ãŽã¨ãããããį¨ããĻ
åå \[f': X/\!\sim \to Y\] ãåŽįžŠã§ãã.
åå \(f\) ãéŖįļãĒãã°ã \(f'\) ããžãéŖįļã§ãã.
éŖįļã§ãããã¨ãŽåŽįžŠãĢåŋ åŽãĢã \(Y\) ãŽä¸ãŽééå \(U\) ãŽåŧãæģããééåã§ãããã¨ãį¤ēã. \(f\) ãéŖįļã§ãããã¨ã¯äģŽåŽããĻãããŽã§ \[f^{-1}(U) \subseteq X\] ã¯ééå.
åéåãŽäŊį¸ã¯ \(X\) ãŽééåã \(p\) ã§åããããŽãééåã§ããã¨ããĻåŽįžŠããããŽãĒãŽã§ãããĄãã \[p(f^{-1}(U)) \subseteq X/\!\sim\] ã¯ééå.
\(p(f^{-1}(U))\) ã¨ããéåãåŽã¯ \(f'^{-1}(U)\) ã¨åãããŽã§ãããã¨ãį¤ēã. ããã§ããã°ãééå \(U\) ãåŧãæģããããŽãééåãĒãŽã§ \(f'\) ã¯éŖįļååã§ãããã¨ãį¤ēããããã¨ãĢãĒã. ããŽ2ã¤ãŽéåãåãããŽã§ãããã¨ã¯ã ãããčĒæ.
ãŧããé¤ãã \(\mathbb{C}^{n+1}\) ãĢã¤ããĻã ãŧãã§ãĒãč¤į´ æ°åãåä¸čĻããããŽã \(n\) æŦĄå å°åŊąč¤į´ įŠēé \(\mathbb{C}P^n\) ã¨ãããŽã§ããŖã.
\(n+1\) æŦĄå ãĻãŧã¯ãĒããįŠēéãŽä¸ãŽãåįšãããŽčˇéĸã 1 ã§ããįšãããĒãįŠēéã \(n\) æŦĄå įéĸ \(S^n\) ã¨ãããŽã§ããŖã.
įš \((z_1,\ldots,z_n,z_{n+1}) \in \mathbb{C}^{n+1}\) ãå˛ãŖãĻåãįšã \[[z_1 : \ldots : z_n : z_{n+1}] \in \mathbb{C}P^n\] ã¨æ¸ã.
ãããĢ \(2n\) æŦĄå ãŽåąæåē§æ¨ãä¸ãã. åŽå°åŊąįŠēéã¨å ¨ãåæ§ãĢããŧãã§ãĒã \(z_i\) ã§äģãå˛ã. äģã \(z_{n+1} \ne 0\) ãĒãįŠēéãĢåļéããĻčããã¨ãåē§æ¨ã \[\left( \frac{z_1}{z_{n+1}}, \frac{z_2}{z_{n+1}}, \ldots \frac{z_n}{z_{n+1}} \right)\] ã¨ãã. ãã ãããã㯠\(n\) ã¤ãŽč¤į´ æ°ã§ãããããŽåŽé¨ã¨čé¨ãåãŖãĻ \(2n\) ã¤ãŽåŽæ°ã¨čĻåããĻãããåē§æ¨ã¨ãã. äžŋåŽä¸ãč¤į´ æ°ãŽãžãžæ¸ã.
č¨ŧæã¯įįĨããããããã¯åąæåē§æ¨ã¨ããĻåĻĨåŊ.
įš \((x_1, x_2, \ldots, x_n, x_{n+1}) \in \mathbb{R}^{n+1}\) (ãã ã \(x_1^2 + x_2^2 + \cdots + x_n^2 + x_{n+1}^2=1\)) ã \(S^n\) ãĢåãčžŧãã įš \(p\) ãŽåē§æ¨ãä¸ãã. \(x_{n+1} \ne +1\) ãĢåļéããįŠēé㨠\(x_{n+1} \ne -1\) ãĢåļéããįŠēéã¨ã§2ã¤ãĢåãã.
\(x_{n+1} \ne -1\) ã§ã¯åē§æ¨ã \[\left( \frac{x_1}{1 + z_{n+1}}, \frac{x_2}{1 + z_{n+1}}, \ldots, \frac{x_n}{1 + z_{n+1}} \right)\] ã§ä¸ãã. \(x_{n+1} \ne +1\) ã§ã¯ \[\left( \frac{x_1}{1 - z_{n+1}}, \frac{x_2}{1 - z_{n+1}}, \ldots, \frac{x_n}{1 - z_{n+1}} \right)\] ã§ä¸ãã.
ãããããĢæŦĄãŽãããĢåē§æ¨ãä¸ãã. åēæŦįãĢå ãĢčŋ°ãšãããŽãããŽãžãžį¨ãã.
įš \([z_1:z_2] \in \mathbb{C}P^1\) ãĢã¤ããĻã \[\begin{cases} z_1 / z_2 & \text{where} ~ z_2 \ne 0 \\ z_2 / z_1 & \text{where} ~ z_1 \ne 0 \end{cases}\]
ãããĻįéĸãŽæšã§ããããåē§æ¨ãŽå ã1ã¤ãĢäŊč¨ãĢãã¤ããšãæãã. ãããããã§åē§æ¨ãåē§æ¨ã§ãĒããĒããã¨ã¯ãĒã.
įš \(p(x_1,x_2,x_3) \in S^2\) ãĢã¤ããĻã \[\begin{cases} \left(\frac{x_1}{1+x_3}, \frac{x_2}{1+x_3}\right) & \text{where} ~ z_2 \ne 0 \\ \left(\frac{x_1}{1-x_3}, \color{red}{-}\frac{x_2}{1-x_3}\right) & \text{where} ~ z_1 \ne 0 \end{cases}\]
æŦĄãŽãããĒååãčãã. ããã垎ååį¸ãä¸ããããŽã§ãã.
įš \(z_1/z_2 = z = x+iy\) ã \[(x,y) = \left(\frac{x_1}{1+x_3}, \frac{x_2}{1+x_3}\right)\] ãĢåã.
įš \(z_2/z_1 = z = x+iy\) ã \[(x,y) = \left(\frac{x_1}{1-x_3}, \color{red}{-}\frac{x_2}{1-x_3}\right)\] ãĢåã.
ããããžãååã¨ããĻæŖåŊã§ãããããĢã¯ã ä¸įšããã ä¸įšãĢåãŖãĻããåŋ čĻããã. åŗãĄãåē§æ¨å¤æããĻãåãįšã§ããåŋ čĻããã. (ãã¤ããšãã¤ãããŽã¯ãããŽãã.)
\(\mathbb{C}P^1\) ãŽįš \([z_1 : z_2]\) ãããŽåē§æ¨ \(z_1/z_2 = z = x+iy\) ãčĩˇįšãĢãã. ããã \(S^1\) ãĢåã㨠\((x,y) = \left(\frac{x_1}{1+x_3}, \frac{x_2}{1+x_3}\right)\) ãããåē§æ¨å¤æãã㨠\[\left( \frac{x}{x^2+y^2}, -\frac{y}{x^2+y^2} \right) = \left(\frac{x_1}{1-x_3}, \color{red}{-}\frac{x_2}{1-x_3}\right)\] ããã \(\mathbb{C}P^1\) ãĢåã㨠\[\frac{x - iy}{x^2+y^2}\] ããã¯ãĄãããŠã \(z=x_iy\) ãŽéæ°ãĢãĒãŖãĻãã (ãããĒããããĢčĒŋæ´ãããã). ãĒãŽã§įš \([z_1 : z_2]\) ãŽåē§æ¨ãĢãĒãŖãĻãã.